
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022 2006809

Hybrid Microwave Imaging of 3-D Objects Using
LSM and BIM Aided by a CNN U-Net
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Abstract— This article presents an efficient and accurate 3-D
quantitative hybrid microwave imaging (MWI) method. The
linear sampling method (LSM) is first carried out to quickly find
the approximate shapes and locations of the unknown objects in
the imaging domain based on the scattered field data recorded
by receivers which are placed in the far-field zone and wrap
the domain. Then the full-wave inversion (FWI) is implemented
in a downsized domain which tightly encloses the unknown
objects instead of in the whole domain through the Born iterative
method (BIM) to quantitatively retrieve the dielectric model
parameters of the objects. Because the LSM fails to obtain the
sufficiently accurate shapes of the unknown objects, a trained 3-D
convolutional neural network (CNN) U-Net is inserted between
the LSM imager and the BIM solver to further refine the obtained
shapes of LSM, which is expected to aid the following FWI.
The proposed hybrid method is validated via the quantitative
imaging of both inhomogeneous isotropic scatterers and multiple
homogeneous anisotropic scatterers. It is shown that the hybrid
method can achieve both higher reconstruction accuracy and
lower computational cost compared with direct BIM inversion.
Meanwhile, its antinoise ability is also tested.

Index Terms— Convolutional neural network (CNN), full-wave
inversion (FWI), linear sampling method (LSM), microwave
imaging (MWI).

I. INTRODUCTION

M ICROWAVE imaging (MWI) is ubiquitous in modern
military and civil activities such as radar remote sens-

ing [1], city antiterrorism [2], mine detection [3], security
screening [4], diagnosis of breast cancer [5], and inspection
of subsurface anomalies [6]. The specific implementation of
fast and accurate MWI attracts the tremendous interest of
researchers in recent years [7], [8], [9].

Different MWI application scenarios have different require-
ments for speed and accuracy. In many real-time applica-
tions, e.g., through-the-wall imaging for antiterrorism [10],
qualitative MWI techniques are always adopted since they
can provide instantaneous approximate images of unknown
targets. Representative methods include tomography, migra-
tion, sampling methods, etc. Tomography utilizes the change
of amplitude or phase when a high-frequency microwave
passes through the target to obtain its dielectric images [11].
By contrast, diffraction tomography uses the diffraction of
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low-frequency electromagnetic (EM) waves around the target
to reconstruct its parameters by Born approximation (BA) or
Rytov approximation (RA). It has been widely employed in
geophysical exploration [12]. Migration accomplishes target
image focusing through time correlation between the EM pulse
signals recorded at the receiver array and the diffusion waves
reflected by the target [13]. Sampling methods are actually to
convert the EM field recorded at the receiver array into the
far-field spherically symmetric wave radiated by a fictitious
focal source in the imaging domain. Typical methods include
linear sampling method (LSM) [14], direct sampling method
(DSM) [15], orthogonality sampling method (OSM) [16],
factorization method (FM) [17], etc. Unfortunately, although
this qualitative MWI method can obtain the approximate
target image in a quite short-time period, the target dielectric
parameters, e.g., permittivity and conductivity, are missing.

The quantitative MWI which is frequently realized by
full-wave inversion (FWI) is able to overcome this shortcom-
ing by strictly solving the wave equation, e.g., the integral
equation. Nevertheless, due to the intrinsic nonlinearity of
the EM inverse scattering, the unknown model parameters are
usually solved by means of iteratively minimizing an objective
function that reflects the mismatch between the measured
scattered field data and the forward model-simulated data.
Representative iterative methods include the Born iterative
method (BIM) [18], contrast source inversion (CSI) [19],
subspace optimization method (SOM) [20], and their vari-
ants [21], [22] as well as the hybridization [23], [24], etc.
The detailed implementation of these iterative methods is quite
mature and will not be repeated here. However, although
these iterative FWI methods are capable of reconstructing
both shapes and dielectric parameters of unknown objects
simultaneously, they suffer from unaffordable computational
costs. This is especially obvious for the multiparametric 3-D
FWI of arbitrary anisotropic scatterers [25].

Therefore, in this article, we extend the 2-D threefold
hybrid method presented in our previous work [26] to 3-D
scenarios and make use of the respective advantages of the
qualitative 3-D LSM imaging technique and the quantitative
3-D BIM FWI. Similar as in [26], the LSM is first used to
quickly reconstruct the approximate 3-D shapes of unknown
objects in the imaging domain. Then, BIM is implemented
in the compressed 3-D regions which tightly wrap the objects.
Meanwhile, a 3-D convolutional neural network (CNN) U-Net
is used to refine the shapes of the objects obtained by
the 3-D LSM. Its usefulness and effectiveness have been
validated in [27]. The key innovation point of our work is
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the threefold hybrid 3-D MWI method. Compared with the
pure qualitative MWI method, e.g., LSM, the proposed hybrid
method can obtain both the shapes and dielectric information
of the unknown objects. Nevertheless, compared with the pure
quantitative MWI method, e.g., BIM, the proposed method can
accomplish FWI with lower computational cost and achieve
higher inversion accuracy due to the downsized computational
domain. In addition, it is worth mentioning the difference
between this work and [26] and [27]. The research work
in [26] is focused on 2-D applications. Therefore, both the
formulas of LSM and BIM are mathematically derived in a 2-D
framework. Besides, the CNN U-Net in [26] is also 2-D and
only 2-D isotropic objects are reconstructed. In [27], although
both the 3-D LSM and BIM are adopted, they are for near-
field measurement. The transmitters and receivers are placed
in a plane just above the subsurface imaging region. In our
work, we focus on 3-D MWI applications. The transmitter
and receiver arrays wrap the imaging domain and are placed
in the far-field zone. This leads to different LSM formulas and
also completely different 3-D imaging results which will be
shown in Section III. In addition, in this work, the proposed
hybrid method is applied to the quantitative MWI of 3-D
anisotropic objects, which has never been discussed in [26]
and [27]. Finally, we want to emphasize the difference between
our work and some other hybrid 3-D MWI methods which also
utilize CNN. For example, in [28] and [29], the CNN is used
to reconstruct the dielectric images from magnetic resonance
or ultrasound images of tissues. In [30], the CNN directly
obtains the image of the 3-D volume moisture content from
scattered field data. In our work, the CNN U-Net only deals
with the shapes of 3-D objects. The dielectric parameters are
completely reconstructed by the FWI BIM.

The rest of this article is organized as follows. In Section II,
the detailed theory including the 3-D LSM for the far-field
measurement and the 3-D BIM for the reconstruction of
anisotropic objects is described. In Section III, two numerical
cases are presented to validate the proposed hybrid method.
The first case is for the reconstruction of 3-D isolated and
isotropic inhomogeneous scatterers. The second case is for
the inversion of multiple homogeneous anisotropic scatterers
and the simulated scattered field data are contaminated by
Gaussian noise. Finally, in Section IV, the conclusion is
drawn.

II. METHODS

In this section, we first briefly describe the mathematical
formulas of 3-D LSM used for far-field MWI. Their difference
with respect to those of the 3-D LSM used for near-field
measurement can be found by comparing the content in
Section II-A in this article and that in [27, Sec. II-A]. Then,
the full-wave forward and inverse scattering formulas for
anisotropic objects are concisely described in the framework
of integral equations. Finally, the 3-D CNN U-Net used to
refine the LSM images is simply mentioned.

A. 3-D LSM for Far-Field MWI

As shown in Fig. 1, D denotes the 3-D imaging and
inversion domain which is discretized into several independent

Fig. 1. Three-dimensional MWI and FWI model configuration.

voxels. The location of each voxel is denoted by r′ which
represents one spatial sampling point of the 3-D LSM. � ⊆ D
denotes the support of the scatterer. The transmitters and
receivers are placed on a spherical surface located in the far
zone (i.e., at a distance R ≥ 10λ0, where λ0 is the wavelength
in the background free space). The 3-D LSM is to determine
the gain matching relationship between the scattered field data
recorded at the far-field receiver array and the 3-D Green’s
function corresponding to the fictitious source point located at
r′. The obtained gain is expected to be limited if r′ ∈ � but
infinitely large if r′ /∈ � [31].

Suppose there are totally Nt transmitters and Nr receivers
placed on the far-field spherical surface with the radius R.
Because the 3-D LSM requires multiview and multistatic EM
data with multipolarization [31], we invoke the θ̂ and φ̂
components of the electric fields in the LSM formulas. For the
incident electric field Eθ

inc or Eφ
inc and the recorded scattered

electric field Eθ
sct or Eφ

sct, we can assemble four (Nr × Nt )-
dimensional multistatic scattered field data matrix Fp,q where
p and q can either be θ or φ. The generic element of Fp,q

is the q̂ polarized scattered electric field measured at the mth
receiver when the nth transmitter emits a p̂ polarized electric
field [31]. Assuming that the solution of 3-D LSM is the
(2Nt )-dimensional unknown vector gu = [gθ

u(r
′), gφ

u (r′)], then
the formula of LSM can be written as follows:

Fgu =
[

Fθ,θ Fθ,φ

Fφ,θ Fφ,φ

][
gθ

u(r
′)

gφ
u (r′)

]
=
[

fθu(r
′, r)

fφu (r′, r)

]
= fu(r′, r) (1)

where fp
u (r′, r) is the p̂ component of the far-field Green’s

function linking the fictitious source point at r′ in the imaging
domain D and the receiver locating at r. The subscript u =
x, y, or z means the fictitious source can be polarized in x̂ , ŷ,
or ẑ directions, respectively. The evaluation of fp

u is given in the
Appendix. gu is the indicator of the support of the 3-D scatterer
and its solving process is the same as that given in [27]. The
final 3-D LSM image G(r′) is obtained by

G(r′) = log

(
1

3

∑
u=x,y,z

1∥∥ĝu

∥∥2
2

)
(2)

where ‖‖2 denotes the L2 norm. G is expected to be large
if r′ locates inside the scatterer but small if it is outside
the scatterer. In addition, it has a blurred boundary [31] and
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the intact 3-D shape can be obtained via threshold cut. The
corresponding mathematical formula has been given by [27,
eq. (11)]. One should note that the threshold value used in the
cut is obtained by multiplying an empirical constant with the
maximum value of G in all the discretized voxels to achieve
the best shape [27], [31].

B. 3-D FWI by BIM for Anisotropic Scatterers

As shown in Fig. 1, the scatterer embedded in the inversion
domain of free space is assumed to be nonmagnetic and has
dielectric arbitrary anisotropy. Its complex relative permittivity
tensor is computed by

ε =
⎡
⎣ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

⎤
⎦+ 1

jωε0

⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ (3)

where εpq = εqp and σpq = σqp with p, q = 1, 2 and 3.
Note only the symmetrical tensors which are ubiquitous in
nature [32] are considered. The forward scattering is described
by the electric field integral equation (EFIE) [25]

Einc(r) = Etot(r) − Esct(r) = ε
−1

(r)
Dtot(r)

ε0

− jω
∫

D
GEJ(r, r′) · χ(r′)Dtot(r′)dr′ (4)

where GEJ is the dyadic Green’s function (DGF) in the
homogeneous free space [33] and χ is contrast function which
is defined as

χ(r) = [ε(r) − I]ε−1
(r). (5)

In numerical computation, (4) is discretized and Dtot is
expanded by the rooftop basis functions. The coefficients
are solved by the stabilized biconjugate-gradient fast Fourier
transform (BCGS-FFT). Details can be found in [25] and [34]
and will not be repeated here.

The inverse scattering from anisotropic scatterers is formu-
lated by the data equation which is expressed as [25]

Esct(r) = jω
∫

D
GEJ(r, r′) · χ(r′)Dtot(r′)dr′ (6)

where Esct is the scattered EM field recorded at the receiver
array. In the numerical computation, (6) is discretized and the
matrix-form equation including the sensitivity matrix which
is composed of total field Etot and DGFs is obtained [25].
However, because Etot also depends on the unknown contrast
χ , the matrix-form equation is nonlinear and can only be
solved via iterations. We linearize the equation by replacing
Etot in the current iterative step with that obtained in the
last step by the forward solver BCGS-FFT, and construct the
L2 norm cost function in the framework of BIM [35]

C(xk) = ‖b − Ak−1xk‖2
2

‖b‖2
2

+ γ
R(xk)

R(xk−1)
(7)

in which b is a column vector including the measured scat-
tered field data, Ak−1 is the Fréchet derivative matrix being
composed of DGF and Etot solved by BCGS-FFT in the
(k − 1)th step, and xk is a vector containing the unknown

Fig. 2. (a) Isotropic 3-D samples used for training the U-Net. (b) Convergence
curves of training and validation.

model parameters to be solved in the current iterative step. γ
is the regularization factor and R is the total variational (TV)
regularization which is written as

R(x) =
∥∥∥∥
√

(Dx x)2 + (Dyx)2 + (Dzx)2

∥∥∥∥
1

(8)

where ‖·‖1 stands for the L1 norm and Dx , Dy, and Dz

denote the discrete difference matrices in three directions [36].
Compared with (7) and (8) given in [27], the only difference
here is that we consider the dielectric arbitrary anisotropy of
the scatterer. Therefore, the vector x in (7) also contains the
nondiagonal elements of dielectric tensors and the sensitiv-
ity matrix A has corresponding additional columns. Finally,
it is worth mentioning that the aforementioned mathematical
derivations can easily degenerate into isotropic EM scattering
ones which will be used in the following Case 1 although their
current forms are only derived for anisotropic scatterers.

C. 3-D CNN U-Net

The 3-D CNN U-Net is placed between the LSM imager and
the BIM solver. Its purpose is to refine the 3-D image output
from the LSM algorithm. The U-Net used in this article is the
same as that used in [27] and its details can be found in [27,
Sec. II-C]. Its input is the LSM image. Its output is the ground
truth shape of the unknown object in the training procedure.
The loss function and the training method are also the same as
those in [27]. Details will not be repeated here. The training
samples and their dielectric parameters are different. They will
be displayed in Section III.

III. NUMERICAL RESULTS

In this section, we use two numerical cases to verify
the proposed hybrid 3-D MWI method. In the first case,
an inhomogeneous scatterer is located in free space. Both
the permittivity and conductivity are reconstructed. In the
second case, two isolated homogeneous but dielectric arbitrary
anisotropic scatterers are reconstructed. The reconstruction
ability of multiple anisotropic objects, antinoise ability as well
as generalization ability of the proposed MWI method are
validated. For the 3-D LSM, the operation frequency is 1 GHz
in the first case. However, it is increased to 1.6 GHz in the
second case to enhance the imaging resolution. In both cases,
the operation frequency is lowered to 300 MHz in the FWI
to ensure BIM iteration stability. Transmitters are placed on a
sphere surface with a radius of infinite large, i.e., the incident
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Fig. 3. True 3-D profiles of the inhomogeneous objects, their LSM imaging results, and the voxel classification results in the four tests. Columns 3 and
4 show the 2-D yz and xy LSM imaging slices, respectively. Column 5 shows the LSM results based on the threshold cut. Column 6 shows the LSM results
based on 3-D U-Net refinement.

field is a plane wave. Receivers are placed on a sphere surface
that has a radius of 10 m. For the 3-D LSM, the transmitter
array and the receiver array are arranged in the sphere surface
with equal arc-length step. In both θ̂ and φ̂ directions, the angle
step is 30◦. So, there are totally 84 transmitters. The receiver
number is decreased to 62 because all the receivers in the north
pole or the south pole corresponding to different φ values are
overlapped to one receiver. For the 3-D FWI by BIM, the angle
step in the φ̂ direction is increased to 60◦. Therefore, there
are totally 42 transmitters and 32 receivers used for the FWI.
For this configuration of transmitters and receivers, numerical
simulations show that further increasing their numbers has no
aid for the LSM imaging and BIM inversion results while
decreasing their numbers will compromise the results. The
inversion domain has the dimensions of 0.64 × 0.64 × 0.64 m
and is divided into 32 × 32 × 32 voxels. Its center is at the
origin. The measured scattered field data used in this article are
simulated by the BCGS-FFT forward solver. The model misfit
and data misfit defined in [37, eqs. (16) and (17)] are used to
indicate the inversion performance. The stopping criterion of
iterations of BIM is that the data misfit is less than 0.9%
or its relative change in two consecutive iterations is less
than 0.4%. All the numerical experiments are performed on
a workstation with a 44-core Intel Xeon 6161 2.2 G CPU
and 1024 GB RAM.

A. Case 1: An Inhomogeneous Isotropic Object

Similar to [27], we use homogeneous 3-D objects to train
the U-Net but use inhomogeneous objects to test its gener-
alization ability. As shown in Fig. 2(a), the training dataset

includes six types of simple shapes. They are cones, ellipsoids,
cuboids, cylinders, hemispheres, and random combinations of
cuboids (forming the cross shape). For each training sample,
only one homogeneous object with a random size is placed
in a random position of the inversion domain. There are
totally 3000 samples used for training and 500 ones for
validation. The relative permittivity values of these samples
fall between 1.2 and 2.5 while the conductivity values are
between 1.0 and 6.0 mS/m. As shown in Fig. 2(b), the final
training loss keeps at 0.005 while the validation loss remains
at 0.09 after 500 epochs. We then use an inhomogeneous “L”
shape, a warehouse, an ice cream, and a mushroom to test
the hybrid MWI method. The 3rd and 4th columns in Fig. 3
show the LSM images obtained by (2). We can see that the
2-D slices in both yz and xy planes are close to the true cross
sections. This implies that the 3-D images reconstructed by
LSM resemble the true 3-D shapes shown in the 1st and 2nd
columns. Then, the 5th column of Fig. 3 shows the 3-D shapes
obtained by threshold cut while the 6th column shows those
obtained by U-Net. Obviously, the U-Net can significantly
improve the reconstructed 3-D shapes.

Then, we implement BIM to reconstruct both the permit-
tivity and conductivity of the two inhomogeneous objects in
Tests #1–4. The FWI is carried out in the whole inversion
domain, in the imaging region judged by threshold cut, and in
the imaging region recovered by the 3-D U-Net, respectively.
The inverted relative permittivity and conductivity distribu-
tions are shown in Figs. 4 and 5. We can see that only a
blurry object with small permittivity and conductivity values is
obtained if BIM is carried out in the whole inversion domain.
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Fig. 4. FWI of relative permittivity values by BIM performed in the whole inversion domain, in the imaging region obtained by threshold cut, and in the
imaging region refined by U-Net. Columns 1–3 show the 2-D yz slices of inversion results. Columns 4–6 show the 2-D xy slices of inversion results.

The shapes of the reconstructed objects are not discernible.
Then, if we implement BIM in the downsized inversion
domain obtained by the threshold cut, the obtained dielectric
profiles are significantly improved, as shown in the 2nd and
5th columns of Figs. 4 and 5. However, there are still obvious
discrepancies between the reconstructed shapes and dielectric
parameter values and their ground truths. These discrepancies
are obviously reduced if BIM is implemented in the downsized
inversion domain obtained by 3-D U-Net refinement, as shown
in the 3rd and 6th columns of Figs. 4 and 5. The 3-D U-Net
is capable of generating accurate shapes of the objects from
LSM images acquired from far-field measurements, which
guarantees the successful applications of the proposed hybrid
method to quantitative 3-D MWI.

The data misfit variations in Tests #1–4 are shown in Fig. 6.
We can see that the data misfits of Tests #1, #3, and #4 for
the BIM implemented in the whole inversion domain have the
largest values. By contrast, those for the BIM implemented in
the imaging region obtained by U-Net have the smallest values
among the three methods since the inversion domains restored
by U-Net are close to the true scatterer shapes. Table I shows
the model misfits of reconstructed permittivity and conductiv-
ity when iterations terminate. It can be seen that, among the
three methods, the FWI based on U-Net has the smallest model
misfit while that implemented in the whole inversion domain
has the largest model misfit. These comparisons of data
misfits and model misfits among different inversion methods
quantitatively manifest the superiority of the prosed hybrid
method for 3-D MWI. One interesting observation is that the
model misfit values of conductivity are much larger than those
of the permittivity. This is caused by the zero conductivity
value of the free space background. The denominators in

TABLE I

MODEL MISFITS (%) FOR BIM, LSM+TH+BIM,
AND LSM+U-NET+BIM

the model misfit calculation for conductivity are rather small
(see [37, eq. (16)]), which causes large model misfit values.
Another obvious superiority of the proposed hybrid method is
its lowest computational cost due to the reduction of inversion
domain. For example, in Test #4, there are totally 32 768,
1656, and 1435 voxels in the whole inversion domain, the
inversion domain obtained by threshold cut, and by the U-Net
refinement, respectively. This implies that the computational
cost of the proposed hybrid 3-D method is also the lowest
among the three methods. Numerical simulations show that
the mean single-step iteration time of BIM performed in the
whole inversion domain is 235 s, while that based on U-Net
results is only 47 s in Test #4.

B. Case 2: Multiple Homogeneous Anisotropic Objects

In this case, we apply the proposed hybrid MWI method
to the reconstruction of 3-D dielectric arbitrary anisotropic
objects whose dielectric parameter tensors are symmetri-
cal [34]. The simulated electric fields are contaminated by
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Fig. 5. FWI of conductivity values by BIM performed in the whole inversion domain, in the imaging region obtained by threshold cut, and in the imaging
region refined by U-Net. Columns 1–3 show the 2-D yz slices of inversion results. Columns 4–6 show the 2-D xy slices of inversion results.

Fig. 6. BIM convergence curves in the four tests.

Fig. 7. (a) Anisotropic 3-D objects used for training the U-Net. (b) Conver-
gence curves of training and validation.

20 dB white Gaussian noise which leads to approximately
10% errors. Here, the noise level is defined according to the

Fig. 8. (a) True shapes of the anisotropic cuboid and sphere. (b) Two-
dimensional LSM image yz slice of the cuboid at x = 0.1 m. (c) Two-
dimensional LSM image xy slice of the sphere at z = 0.16 m. (d) Refined
shapes of two anisotropic objects by U-Net.

signal-to-noise ratio (SNR) of power, and the noise is added
to the scattered field data instead of to the total field data. The
Gaussian noise is generated by the MATLAB function wgn.
The training dataset is constructed by randomly combing two
basic shapes shown in Fig. 7(a) except the combination of a
hemisphere and a cuboid which will be used in the testing.
The diagonal elements of the relative permittivity tensor of
the homogeneous object used in the training randomly change
between 1.3 and 2.0 and the nondiagonal elements change
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Fig. 9. Reconstructed anisotropic dielectric parameters of the cuboid and the sphere. (a)–(l) By BIM implemented in the inversion domain judged by U-Net.
(m)–(x) By BIM implemented in the whole inversion domain.

TABLE II

RELATIVE PERMITTIVITY AND CONDUCTIVITY OF THE CUBOID AND

SPHERE WITH DIELECTRIC ARBITRARY ANISOTROPY

between 0.2 and 0.7. All the elements in the conductivity
tensor range between 2 and 8 mS/m. Totally, 1100 3-D samples
with dielectric arbitrary anisotropy are generated by LSM
from scattered field data with 20 dB noise. Among them,
1000 samples are used for training and 100 ones are used
for validation. Fig. 7(b) shows the convergence curves for
both training and validation which have no obvious difference
compared with the ones shown in Fig. 2(b).

In the online prediction, we apply LSM and the trained
U-Net to the inversion of a sphere and a cuboid, as shown in
Fig. 8(a). One should note that the combination of a sphere
and a cuboid is not included in the training dataset. Such a
choice is to test the generalization ability of the trained 3-D
U-Net. The sizes of two objects are labeled in Fig. 8(a) and
their dielectric parameter values are listed in Table II. Note
we only consider the scatterers with symmetrical dielectric
tensors, which is commonly seen in real-life applications,
e.g., crystal inspection [38]. The values of some parameters

actually fall out of the ranges of the parameter values of the
training dataset, which is also used to test the generalization
ability of the U-Net. In addition, the simulated scattered
field data by these two objects are also contaminated by
20 dB noise. Figs. 8(b) and (c) respectively show the yz
and xy slices of the same 3-D LSM image of the entire
domain. One interesting observation is the existence of the
phantom image of another object, which has not been found
in Case 1. This may be caused by the mutual scattering
among multiple objects. Fortunately, the phantom images are
eliminated by the 3-D U-Net and its good output is displayed
in Fig. 8(d).

We then perform the FWI by BIM in the restricted domain
obtained via the U-Net refinement and the whole inversion
domain, respectively. The 3-D results are shown in Fig. 9 and
the model misfits for all reconstructed anisotropic dielectric
parameters are listed in Table III. We can see that the proposed
hybrid method also shows good performance for the inversion
of anisotropic scatterers with 12 unknowns even when the
scattered field data are contaminated by 20 dB noise. Not
only the shapes of the cuboid and the sphere are precisely
reconstructed, but also the values of their model parameters
are accurately retrieved. This is manifested by the low model
misfit values listed in Table III. By contrast, only two blurry
objects show up in the 3-D imaging region if BIM is imple-
mented in the whole inversion domain, as shown in the 3rd and
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TABLE III

MODEL MISFITS (%) OF THE RECONSTRUCTED ANISOTROPIC DIELECTRIC PARAMETERS BY LSM+U-NET+BIM AND PURE BIM

4th rows of Fig. 9. Although the positions of the two objects
are roughly correct, the shapes are severely distorted and
the volume becomes very large. This leads to much smaller
retrieved dielectric parameters compared to their true values
and thus much larger model misfit values which are listed in
Table III. Note for the reconstruction of anisotropic scatterers,
the model misfit values of conductivity are also much less than
those for the permittivity. The reason has been mentioned in
Section III-A.

IV. CONCLUSION

This article is an extension of our previous work [26] and
the counterpart of [27]. The threefold 3-D hybrid method is
applied to quantitative MWI in which the scattered electric
field data are recorded in the far-field zone and the receiver
array wraps the imaging domain. A series of numerical experi-
ments show that the proposed hybrid method can quantitatively
and precisely image both the 3-D isotropic and anisotropic
objects in a quite efficient way. In the first step, the 3-D
LSM is employed to qualitatively reconstruct the approximate
shapes and locations of the unknown objects. This step is
very fast and is usually accomplished in a few seconds.
In the second step, the shapes reconstructed by the LSM
are improved by the 3-D CNN U-Net. One should note that
this step is almost finished instantaneously by the online
prediction although the offline training usually takes a long
time. In the third step, although the FWI still needs iterations
to obtain the dielectric parameter values, its computational cost
is significantly lowered since it is only executed in a restricted
region instead of in the whole domain. Finally, we want to
emphasize that although the proposed hybrid method succeeds
in the numerical examples, the issues such as the radiation
pattern of transmitter antennas and recorded voltage of antenna
output instead of the electric field quantity must be taken into
account in practical engineering applications. In addition, the
method also has some limitations. For example, the LSM may
fail to generate reliable 3-D images of hollow objects, which
will compromise the inversion ability of the following BIM
solver. If the shapes of practical objects are far from those
used in the training dataset, the U-Net may also fail to obtain
reliable shapes.

APPENDIX

By referring to Fig. 1 and the derivation of electric fields in
the far zone given in [39], we can obtain the far-field Green’s
function fp

u (r′, r) as follows.
If the fictitious source point at r′ ∈ D is x̂ polarized,

we have

fθx(r
′, r) = A1 · A2 · cosθcosφ (A1a)

fφx (r′, r) = −A1 · A2 · sinφ. (A1b)

If the fictitious source point at r′ ∈ D is ŷ polarized,
we have

fθy(r
′, r) = A1 · A2 · cosθsinφ (A2a)

fφy (r
′, r) = A1 · A2 · cosφ. (A2b)

If the fictitious source point at r′ ∈ D is ẑ polarized, we have

fθz (r
′, r) = −A1 · A2 · sinθ (A3a)

fφz (r′, r) = 0. (A3b)

Note that the constants A1 and A2 in the above six formulas
are defined as

A1 = − jωμ0exp[− jk0r ]
4πr

(A4a)

A2 = exp[ jk0(x ′sinθcosφ + y ′sinθsinφ + z ′cosθ)] (A4b)

where r is the length of r = x x̂ + y ŷ + zẑ which denotes the
position of the receiver and r′ = x ′ x̂ + y ′ ŷ + z ′ ẑ denotes the
position of the fictitious source point inside the imaging and
inversion domain D.
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